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In this short note, we prove a G–equivariant generalisation of McDuff–Segal’s group–completion
theorem for finite groups G. A new complication regarding genuine equivariant localisations arises
and we resolve this by isolating a simple condition on the homotopy groups of E∞–rings in G–spectra.
We check that this condition is satisfied when our inputs are a suitable variant of E∞–monoids in G–
spaces via the existence of multiplicative norm structures, thus giving a localisation formula for their
associated G–spherical group rings.

1 Introduction
Group–completion is an important procedure in higher algebra for at least two reasons: (1) it is the
main ingredient in constructing the K–theory of symmetric monoidal (∞−)categories; (2) it allows one
to port spectral methods to study questions regarding moduli spaces. The homotopy types of these
group–completions are however mysterious in general, and the group–completion theorem of McDuff–
Segal [19, 24] is a classical tool giving a homological formula for these objects. By now, the theorem has
become a standard component, for example, in the active area burgeoning in the wake of the Madsen–
Weiss theorem (cf. [8, §7.4] and [9, §7]) relating the homology of diffeomorphism groups to something
amenable to stable homotopy theoretic methods. Very roughly speaking, the strategy is first to show that
the group–completion of a geometrically defined cobordism category associated to the diffeomorphism
groups is equivalent to a particular Thom spectrum. One then combines this identification with the
group–completion theorem to compute, up to stabilisation, the homology of the said diffeomorphism
groups in terms of the homology of the Thom spectrum.

In this article, we investigate a G–equivariant generalisation of this classical result for finite groups
G. This is not as contrived a question as it may first seem since one of the main steps for an equivariant
generalisation of the “Madsen–Weiss program” above has already been explored in [10, Thm. 1.1] where
they identified the group–completion of a certain equivariant cobordism category with an equivariant
Madsen–Tillmann spectrum. Our hope is that the result we present here could provide one of the
standard pieces in a future equivariant story and serve as a useful tool for making Bredon homological
analyses of equivariant group–completions.

Convention 1.1. In this paper, by a category, we will always mean an ∞–category in the sense of
[17]. When emphasising that something is a category in the classical sense, we will term it as
a 1–category.
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Notation 1.2. We will briefly introduce some notions so as to be able to state the main theorem.
More details on all these can be found in §2. We write OG for the orbit category of the finite
group G and SG := Fun(Oop

G ,S) for the category of genuine G–spaces, and write CMon(SG) �
Fun(Oop

G , CMon(S)) for the category of E∞–monoid objects therein. An object M ∈ CMon(SG)

consists of E∞–monoid spaces MH for every subgroup H ≤ G and the restriction map MH → MK

associated to a subconjugation K ≤ H is a map of E∞–monoids.
There is a variant with more equivariant structure, namely the category CMonG(SG) of G–E∞–

monoids in genuine G–spaces. An object M ∈ CMonG(SG) consists of the data above together with
“equivariant addition” maps ⊕H/K : MK → MH for every K ≤ H satisfying double–coset formulas
and higher coherences. This turns out, as we shall recall at the end of Construction 2.6, to
be equivalent to the category MackG(S) := Fun×(Aeff(G),S) of G–Mackey functors valued in
spaces defined as product–preserving presheaves on Barwick’s effective Burnside category
(cf. [7, Rmk. 2.3]). There is a forgetful functor fgt : CMonG(SG) → CMon(SG) forgetting the
equivariant addition maps.

While we reserve the more general—but notationally heavier—statement of the main result Theo-
rem 3.3 in the body of the paper, we can however extract the following simple consequence on Bredon
homology here (whose proof is given at the end of §3 after the proof of Theorem 3.3):

Theorem 1.3. Let M ∈ CMonG(SG) and N a G–Mackey functor valued in abelian groups. For any
K ≤ G, we have a natural isomorphism of RO(K)–graded Bredon homology with N coefficients

HK
� (�BM; N) ∼= HK

� (M; N)[(π0MK)−1].

The reader might now justifiably wonder how common G–E∞–monoid G–spaces actually are. To
address this point somewhat, we will recall a standard mechanism to produce plenty of interesting
examples in Example 4.5.

We now look ahead slightly to say a few words about what is actually proved in Theorem 3.3 and
the methods involved. The general formulation is in terms of higher algebraic localisations of spherical
monoid rings (following that of Nikolaus [23]) and the result will be in two parts: in part (i), we show using
a direct adaptation of the proof in [23, Thm. 1] that for M ∈ CMon(SG), the G–suspension spectrum of its
group completion is computed as an abstract localisation satisfying a universal property. The crux of the
matter here is that, unlike the nonequivariant case where one can prove that the abstract localisation
can always be identified with a telescopic localisation as appears in Theorem 1.3 (cf. e.g., [23, App. A]
for the proof of this in the general case of E1–rings satisfying the Ore condition), this is not so in the
equivariant setting. However, we do show in part (ii) of Theorem 3.3 that when M has the additional
structure of a G–E∞–monoid G–space, the associated G–spherical monoid ring attains the structure of
the multiplicative norms (in the sense of [12, 15]), which in turn ensures that the abstract and telescopic
localisations agree. In fact, we will isolate a simple condition on the equivariant homotopy groups of M
we call torsion–extension (cf. Condition 3.4), which ensures that the abstract and telescopic localisations
agree even in the absence of the norms. This might be usable and useful in specific cases of M.

As far as we know, the theorem cannot be directly deduced from the classical group–completion
theorem because the G–suspension spectrum of a G–space is not given simply by taking the suspension
spectrum on each genuine fixed points of the G–space. The first part of the theorem will require only
standard ∞–category theory (essentially the same proof as [23, Thm. 1] as pointed out above), whereas
in the more highly structured second part of Theorem 3.3 we will need the language of G–categories
introduced in [1] in order to discuss G–E∞ structures succinctly. To our untrained eyes, the relevance
of the multiplicative norms came as a bit of a surprise, but in hindsight, this result is likely known or
at least expected among experts. While we were not able to find this result in the literature, we very
much welcome a reference to where this result might have previously appeared and give the appropriate
credits.

Lastly, a few words on organisation: we will briefly record some foundational materials in §2 to orient
the reader who might not be familiar with the formalism of G–categories; in §3, we give a proof of the
main Theorem 3.3; and in §4 we will end the main body of the article with some remarks on how
norms and localisations managed to interplay well in our situation and how this result fits in with the
nonequivariant group–completion theorem. Along the way, we will explain how geometric fixed points
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7554 | K. Hilman

turn the mysterious localisation LS−1 R into something familiar. We also record a generic situation where
this theorem might be useful and give a rich source of examples of G–E∞–monoid G–spaces. Finally, in
Appendix A, we will prove a technical folklore result, which we use in proving the main theorem, namely
that G–E∞ algebras in G–cartesian symmetric monoidal G–categories are the same as G–E∞–monoids
in said G–category. We have unfortunately not been able to find this in the literature and hope that this
appendix will serve to fill in this gap.

2 Some Preliminaries
Let G be a finite group.

Notation 2.1. Let OG be the orbit category of the finite group G: this is a 1–category whose objects
are transitive G–sets and morphisms are G–equivariant maps. We write SG for the category of
genuine G–spaces, which is defined to be SG := Fun(Oop

G ,S) where S is the category of spaces,
and we write SpG for the category of genuine G–spectra, a model of which is given by G–Mackey
functors valued in spectra (cf. [2, 3]). We will also denote by SG[−] for the functor �∞

+G : SG → SpG

given by taking the G–suspension spectrum.

Notation 2.2. For a category C admitting finite products, we write CMon(C) for the category
of E∞–monoids in C; for a symmetric monoidal category D⊗, we write CAlg(D⊗) for the
E∞–algebra objects in D under the endowed tensor product structure. Writing C× for the
cartesian symmetric monoidal structure, we then have by [17, Prop. 2.4.2.5] that CAlg(C×) �
CMon(C). Note that this means CAlg(Sp⊗

G ) denotes E∞–rings in genuine G–spectra without the
multiplicative norms.

We begin with the following observation, which requires no theory of G–categories:

Observation 2.3. It is a standard fact that the left adjoint in the adjunction

refines to a symmetric monoidal functor with the cartesian symmetric monoidal structure
on SG and the tensor product of G–spectra on SpG (cf. e.g., [18, §5.2] for the case of pointed
G–spaces, which can then be precomposed with the symmetric monoidal functor of adding a
disjoint basepoint (−)+ : SG → SG∗). Thus, by [17, Cor. 7.3.2.7], the right adjoint �∞

G automatically
refines to a lax symmetric monoidal functor and hence, by [17, Rmk. 7.3.2.13], applying the
functor CAlg(−) yields an adjunction

(1)

Now, to set the stage for our discussions about the multiplicative norms, we collect here some basics
on G–categories. The reader uninterested in this refinement can skip right away to the proof of the first
part of Theorem 3.3 in the next section.

Setting 2.4 (The theory of G–categories). In keeping with the tradition of papers about group–
completions, we aim to keep this article as compact as possible. As such, we have chosen to
travel light in this document and we refrain from giving a self–contained exposition of the
required theory on G–categories. For the original sources of these materials, we refer the reader
to [1, 20, 27], and a one–stop survey of G–categories can be found for example in [16, Chap. 1]. In
short, a G–category (resp. a G–functor) is an object (resp. morphism) in Cat∞,G := Fun(Oop

G , Cat∞)

and we will use the underline notation D to denote a G–category and DH for its value at G/H ∈
Oop

G . For subgroups K ≤ H of G, we should think of the datum DH → DK packaged in the G–
category D as a “restriction” functor ResH

K . In particular, by definition of morphisms in functor
categories, a G–functor is always compatible with these “restriction” maps. Important examples
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of G–categories include genuine G–spaces {SG : G/H �→ SH} and genuine G–spectra {Sp
G

: G/H �→
SpH}. Additionally, the functor OH � (OG)/(G/H) → (OG)/(G/G) � OG induces a functor Cat∞,G →
Cat∞,H via restriction, which we denote by ResG

H. Using Lurie’s notion of relative adjunctions [17,
§7.3.2], one can define the notion of G–adjunctions (cf. [27, Def. 8.3]): this roughly means a pair
of G–functors L : C � D : R together with the data of adjunctions when evaluated at each
G/H ∈ Oop

G .
Central to this theory is the notion of G–(co)limits, and among these the special cases of indexed

(co)products find a distinguished place. In this article, we will only need these special cases, and
so we briefly explain them now. Intuitively, they should be thought of as taking (co)products
with respect to finite G–sets so that for example, for C ∈ Cat∞,G, H ≤ G and a H–equivariant
object X ∈ CH,

∏
G/H X is now a G–equivariant object. We refer the reader to [27, §5] for more

details on this. When C is pointed (which just means that CK is pointed for every K ≤ G and
all the restriction maps preserve the zero objects), one can construct a canonical comparison
map

∐
G/H → ∏

G/H (cf. [20, Cons. 5.2]). If this map is an equivalence, then we say that C is G–
semiadditive. As in the nonequivariant case, for a G–category C with finite indexed products, we
may construct (see for instance [20, Def. 5.9]) the G–semiadditive G–category CMonG(C) of G–
commutative monoids in C whose objects should roughly be thought of as objects M ∈ C equipped
with “equivariant addition maps”

∏
G/H ResG

HM → M for all H ≤ G on top of the usual addition
maps M × M → M. Observe that this version of the equivariant addition maps recovers the one
mentioned in Notation 1.2 upon applying (−)G since MH � (

∏
G/H ResG

HM)G → MG.
Now, denote by Fin∗ for the G–category of finite pointed G–sets. That is, it is the G–category {G/H �→

Fin∗H := Fun(BH, Fin∗)} where BH is the groupoid with one object and morphism set given by the
group H. Nardin used this to give a definition of G–symmetric monoidal categories in [21, §3]
much like the nonequivariant situation from [17]. See also [22, §2] for a comprehensive, more
recent treatment and [25, §5.1] for a summary of these matters. Suffice to say, in this setting,
a G–symmetric monoidal category is a G–category D⊗ equipped with a map to Fin∗ satisfying
appropriate cocartesianness and G–operadic conditions, and G–E∞–ring objects CAlgG(D⊗) :=
Funint

G/Fin∗
(Fin∗,D⊗) are then G–inert sections to this map (see also Recollection A.21 for slightly

more details to this). An object R ∈ CAlgG(D⊗) should be thought of as an object R ∈ CAlg(D⊗
G )

equipped with E∞–algebra maps
⊗G

H ResG
HR → R encoding “equivariant multiplication”. In this

notation, CAlgG(Sp⊗
G
) will therefore mean those E∞–rings in genuine G–spectra equipped with

multiplicative norms, to be contrasted with objects in CAlg(Sp⊗
G ), which do not have norms.

Moreover, following [15], we use the notation NG
H instead of

⊗G
H in the special case of SpG.

Analogously to Notation 2.2, denoting by C× the G–cartesian symmetric monoidal structure on a
G–category C, which admits finite indexed products, we also have that CAlgG(C×) � CMonG(C).
This is essentially because for M ∈ CAlgG(C×), the structure

∏
G/H ResG

HM = ⊗G
H ResG

HM → M
supplies precisely the “equivariant addition” structure to be an object in CMonG(C). While this
is a folklore result, we have not been able to find a proof of this in the literature and so we
have indicated a proof in the appendix, see Proposition A.23, where we also give more precise
explanations and references for some of the matters discussed above.

Lemma 2.5. The G–adjunction SG[−] : SG � Sp
G

: �∞
G induces an adjunction SG[−] : CMonG(SG) �

CAlgG(Sp⊗
G
) : �∞

G .

Proof. We know by [21, §3] that the map SG[−] refines to a G–symmetric monoidal functor SG[−] : S×
G −→

Sp⊗
G

. This means that �∞
G canonically refines to a G–lax symmetric monoidal functor. Hence using that

CAlgG(S×
G ) � CMonG(SG) from Proposition A.23 and [16, Lem. 1.3.11] that applying CAlgG yields another

adjunction analogously to [17, Rmk. 7.3.2.13], we get the desired adjunction. �

Construction 2.6 (Equivariant group–completions). As explained for instance in [11, §1], it makes
sense to speak of objects in arbitrary semiadditive categories (or preadditive, as it was termed
in that paper) having the property of being group–complete by requiring a certain canonically
constructed shear map to be an equivalence. In the case of the semiadditive category CMon(S),
we will write CGrp(S) for the full subcategory of group–complete objects. One characterisation
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7556 | K. Hilman

for some M ∈ CMon(S) to lie in CGrp(S) is that the abelian monoid π0M has the property of
being a group.

If we write B for the suspension in the category CMon(S) (which is very different from the sus-
pension on the underlying space!), then we know that we have the adjunction �B : CMon(S) �
CGrp(S) : incl so that �B implements the group–completion functor on CMon(S). In fact,
as slickly explained in [4, Prop. 3.3.5], �B always implements group–completions in any
semiadditive category with pullbacks and pushouts. We can then cofreely make this into a
G–adjunction of G–categories

(2)

Here for a nonequivariant category C, CofreeG(C) ∈ Cat∞,G is the G–category given by {G/H �→
Fun(Oop

H ,C)}H≤G (cf. [20, Def. 2.7] for instance, where the notation was just an underline instead
of the word “cofree”). In this notation, the G–category of G–spaces is therefore given by SG =
CofreeG(S). Both G–categories in the adjunction are G–semiadditive, and so in particular �B pre-
serves G–biproducts. Now if C admits finite products, then writing MackG(−) := Fun×(Aeff(G), −)

for G–Mackey functors, we have

CMonG(CofreeG(C)) � MackG(C) � MackG(CMon(C))

where the first equivalence is by [20, Thm. 6.5] and the second is well–known and can be
deduced for example from [13, Thm. II.19], using that Aeff(G) is semiadditive by [2, Prop. 4.3, Ex.
B.3]. Using this, we can then apply CMonG(−) to the adjunction (2) to get an adjunction

Concretely, this implements group–completion pointwise, and this is what we mean by
equivariant group–completion.

Construction 2.7 (Forgetting norms). We explain here the compatibility of forgetting multiplica-
tive norms with G–lax symmetric monoidal functors. First note that we have an adjunction
i : ∗ � Oop

G : p where i is the inclusion of G/G, which is the initial object in Oop
G . Hence,

applying Fun(−, Cat∞), we obtain an adjunction of (∞, 2)–categories p∗ : Cat∞ � Cat∞,G : i∗.
Consequently, since p∗(C) = constG(C) := C × Oop

G and i∗(D) = DG = evG/GD, we see that

FunG
(
constG(C),D

) � Fun
(
C,DG

)
. (3)

In particular, the fully faithful functor of 1–categories Fin∗ → Fin∗G := Fun(BG, Fin∗) given
by n �→ ∐n G/G induces a G–functor q : constG(Fin∗) −→ Fin∗ given by (n, G/H) �→ ∐n H/H.
Therefore, for a G–symmetric monoidal category D⊗ ∈ CMonG(Cat∞,G), we obtain the map

where, to analyse the target, we have used that

FunG/Fin∗ (constG(Fin∗),D⊗) := FunG(constG(Fin∗),D⊗) ×FunG(constG(Fin∗),Fin∗) {q}
� Fun(Fin∗,D⊗

G ) ×Fun(Fin∗ ,Fin∗G) {q}
� Fun(Fin∗,D⊗

G ) ×Fun(Fin∗ ,Fin∗) {q} =: Fun/Fin∗ (Fin∗,D⊗
G )

where the second equivalence is by (3) and the third since q ∈ Fun(Fin∗, Fin∗G) lies in the full
subcategory Fun(Fin∗, Fin∗) via the fully faithful functor q : Fin∗ ⊆ Fin∗G. Intuitively, the functor
q∗ forgets the norm structures on a G–E∞–ring object in D and so we will also denote it by fgt
in the sequel.
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All in all, as a consequence, for a G–lax symmetric monoidal functor F : C⊗ → D⊗, since
F : CAlgG(C⊗) → CAlgG(D⊗) is given by postcomposition and the forgetful functor is given by
precomposition along q : constG(Fin∗) → Fin∗, we obtain a commuting square

3 The Main Theorem
In order to state and prove the theorem, we will need a few more terminologies and observations.

Notation 3.1. In this note, two kinds of ring localisations will feature and we define and relate
them here. Let R ∈ CAlg(SpG) and S = {SH}H≤G be a G–subset of the zeroth equivariant homotopy
Mackey functor π0R of R. That is, for any H ≤ G, S satisfies ResG

HSG ⊆ SH ⊆ πH
0 R := π0RH. Now for

any A ∈ CAlg(SpG), we define

MapS−1

CAlg(SpG)
(R, A) and Map

S−1
G

CAlg(SpG)
(R, A)

to be subcomponents of MapCAlg(SpG)(R, A) of E∞–algebra maps R → A, which send elements
in S to units in π0A and send elements in SG to units in πG

0 A, respectively. By general theory
(cf. [23, Appen. A] for example), we know that the latter mapping space is corepresented by

a telescopic localisation S−1
G R of R against elements in SG ⊆ πG

0 R (i.e., Map
S−1

G
CAlg(SpG)

(R, A) �
MapCAlg(SpG)(S

−1
G R, A)). In particular, we have that π�S

−1
G R ∼= S−1

G π�R.
On the other hand, if the former mapping space is corepresentable, then we will write the

corepresenting object as LS−1 R. In general, this need not be given by a nice formula in terms of a
telescopic localisation since we need to invert different sets of elements at different subgroups
H ≤ G that do not all come from restricting elements from SG (i.e., the inclusion ResG

HSG ⊆ SH

might be proper), and so π∗LS−1 R need not admit a nice description as a Mackey functor with
elements in S inverted. However, since maps R → A that invert S must necessarily invert SG,
we do have an inclusion

MapS−1

CAlg(SpG)
(R, −) ↪→ Map

S−1
G

CAlg(SpG)
(R, −).

Thus, when LS−1 R exists, this inclusion is induced by a canonical comparison map in CAlg(SpG)

S−1
G R −→ LS−1 R. (4)

Notation 3.2. Let M ∈ CMon(SG). We write πM ⊆ π0SG[M] for the image of the Hurewicz map on
the equivariant homotopy groups π0M → π0�

∞
G SG[M] = π0SG[M] induced by the adjunction

unit id ⇒ �∞
G SG. This is clearly a G–subset in the sense defined above.

We are now ready to state the main theorem of this note:

Theorem 3.3. Let M ∈ CMon(SG) be an E∞–monoid G–space.

(i) The object L(πM)−1SG[M] exists and the group–completion map M → �BM induces an equivalence in
CAlg(SpG)

L(πM)−1SG[M]
�−→ SG[�BM]

(ii) Moreover, if M additionally has the structure of a G–E∞–monoid G–space—that is, M ∈ CMonG(SG)—
then SG[�BM] � L(πM)−1SG[M] refines to a G–E∞–ring object. In other words, it lifts to an object in
CAlgG(SpG). Furthermore, in this case, the canonical map from (4)

(πG
M)−1SG[M] −→ L(πM)−1SG[M] � SG[�BM]
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7558 | K. Hilman

is an equivalence so that we have the expected localisation effect on homotopy groups, that is,
π�SG[�BM] ∼= (πG

M)−1π�SG[M].

We now turn to the proof of the first part of the theorem. We emphasise again that the theory of
G–categories is not required in this part.

Proof of Theorem 3.3 (i). The proof is exactly the same as that of [23, Thm. 1]. To wit, we first claim that
�BM ∈ CMon(SG) satisfies the following universal property: for every X ∈ CMon(SG), the map

MapCMon(SG)(�BM, X) → Map(π0M)−1

CMon(SG)
(M, X)

induced by η : M → �BM is an equivalence, where Map(π0M)−1

CMon(SG)
⊆ MapCMon(SG) means the subcomponents

of maps where π0M is sent to elements that admit additive inverses in π0X. The map lands in this
subcomponent since �BM is group–complete. To prove the claim, define X× as the pullback in CMon(SG)

so that X× ∈ CGrp(SG). Now consider the commuting diagram

The left vertical i∗ is an equivalence since �BM is group–complete and (−)× is the right adjoint to the
inclusion CGrp(SG) ⊆ CMon(SG); the bottom η∗ is an equivalence since X× is group–complete and �BM
is the group–completion of M by Construction 2.6; the right vertical i∗ is an equivalence because maps
in Map(π0M)−1

are precisely those that land in X× by definition. Therefore, all in all, the top horizontal η∗

is also an equivalence, as claimed.
Now by the adjunction (1), for any A ∈ CAlg(SpG), we have

MapCAlg(SpG)(SG[�BM], A) � MapCMon(SG)(�BM, �∞
G A)

� Map(π0M)−1

CMon(SG)
(M, �∞

G A)

� Map(πM)−1

CAlg(SpG)
(SG[M], A),

(5)

where the second equivalence is by the claim above. By Notation 3.1, SG[�BM] therefore computes
L(πM)−1SG[M], as desired. �

We now turn to the task of refining to normed structures when the input is more highly structured,
that is, when M ∈ CMonG(SG). Before that, it would be useful to formulate the following intermediate

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2024/9/7552/7442065 by M
ax-Planck Society user on 13 M

ay 2024



An Equivariant Group–Completion Theorem | 7559

notion together with a couple of easy consequences that would help us identify the homotopy groups
of the abstract localisation we have so far.

Condition 3.4. (Torsion–extensions). Let R ∈ CAlg(SpG) and S ⊆ π0R be a G–subset of the zeroth
equivariant homotopy groups of R. We say that S satisfies the torsion–extension condition if for
any H ≤ G, the inclusion ResG

HSG ⊆ SH is a torsion–extension, that is, for any a ∈ SH, there exists
a r ∈ πH

0 R such that r · a ∈ ResG
HSG.

Remark 3.5. The reason for this choice of terminology was an analogy in the case of modules: if
I ⊆ J ⊆ R are R–submodules satisfying the analogous condition, then J/I is a torsion R–module.
In any case, the next three lemmas should clarify our interest in this condition.

Lemma 3.6. If R ∈ CAlg(SpG) and S ⊆ π0R is a multiplicatively closed G–subset satisfying
Condition 3.4, then LS−1 R exists and the canonical map S−1

G R −→ LS−1 R from (4) is an equivalence.
Furthermore, in this case, for any K ≤ G, we have that ResG

KS−1
G R � S−1

K ResG
KR.

Proof. As explained in Notation 3.1, the canonical map in the statement induces an inclusion of

subcomponents MapS−1

CAlg(SpG)
(R, A) ↪→ Map

S−1
G

CAlg(SpG)
(R, A). Hence, all we have to do is to show that all

components in the target are hit. So suppose ϕ : R → A inverts elements in SG. We need to show that for
all H ≤ G, ϕ|H : ResG

HR → ResG
HA sends elements in SH ⊆ πH

0 R to units in πH
0 A.

Thus, fix H ≤ G and let a ∈ SH. By hypothesis, there exists an r ∈ πH
0 R such that r · a ∈ ResG

HSG. Since
ϕ|H inverts r · a, let x ∈ πH

0 A such that 1 = x · ϕ|H(r · a) = x · ϕ|H(r) · ϕ|H(a). In particular, since everything is
commutative, x · ϕ|H(r) is the inverse of ϕ|H(a), and so ϕ|H inverts a too. Therefore, since a was arbitrary,
we see that ϕ|H must have inverted all of SH as required.

For the last statement, first observe that ResG
KS−1

G R � (ResG
KSG)−1ResG

KR. Hence, since ResG
KSG ⊆ SK ⊆

πK
0 R, we see that a priori ResG

KS−1
G R has inverted possibly fewer elements than has S−1

K ResG
KR. However,

the same argument as in the previous paragraph shows that under our hypothesis on R, we indeed have
ResG

KS−1
G R � S−1

K ResG
KR as wanted. �

Lemma 3.7. Let R ∈ CAlgG(Sp
G
) be a G–E∞–ring object and S ⊆ π0R be a G–subset that is closed

under the norms. Then S satisfies Condition 3.4.

Proof. Fix H ≤ G and let a ∈ SH. We want to show that there is an r ∈ πH
0 R such that r · a ∈ ResG

HSG. For
this, consider NG

Ha ∈ πG
0 R, which is in fact in SG ⊆ πG

0 R by the norm–closure hypothesis. Then by the
norm double coset formula, we get

ResG
HNG

Ha =
∏

g∈H\G/H

NH
Hg∩Hg∗ResH

H∩Hg a ∈ ResG
HSG,

where a is a factor on the right (i.e., when g = e), whence the claim. �

Lemma 3.8. If M ∈ CMonG(SG), then πM ⊆ π0SG[M] is closed under the norms.

Proof. First of all, by Lemma 2.5, we know SG[M] refines to a G–E∞–ring object. Now fix H ≤ G and
suppose we have n ∈ πH

0 M with associated element n ∈ πH
0 SG[M]. Thus, by definition, the normed element

NG
Hn ∈ πG

0 SG[M] is given by

SG = NG
HSH

NG
Hn−→ NG

HResG
HSG[M] � SG[

∏
G/H

ResG
HM]

S−→[⊕G/H]
S G [M].

Here ⊕G/H :
∏

G/H ResG
HM → M is the G–semiadditivity adjunction counit of an object M ∈ CMonG(SG).

The middle equivalence is since SG[
∏

G/H −] � NG
HSH[−] from the G–symmetric monoidality of the functor

SG[−] from Lemma 2.5
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7560 | K. Hilman

Now, the natural transformation (−) ⇒ �∞
G SG(−) from Lemma 2.5 together with the adjunction

counit
∏G

H ResG
HM

⊕G/H−−→ M yield the commuting diagram

This implies that the normed up element NG
Hn ∈ πG

0 SG[M] already came from the element ⊕G/Hn ∈ πG
0 M

and so πM ⊆ π0SG[M] is closed under norms. �

We now cash in all the work we have done to complete the proof of the theorem.

Proof of Theorem 3.3 (ii). The main point is that we have commuting squares

obtained by using the G–lax symmetric monoidality of the adjunction SG[−] � �∞
G from Lemma 2.5

together with the commuting square in Construction 2.7. In fact, for this proof, we only need that the
(SG[−], fgt) square commutes. Thus, if M ∈ CMonG(SG) so that �BM is again in CMonG(SG) by Lemma 2.6,
then SG[�BM]—which is equivalent to L(πM)−1SG[M] by part (i) of the theorem—naturally refines to the
structure of an object in CAlgG(Sp⊗

G
), that is, it canonically attains the multiplicative norms. The final

statement of part (ii) is then a direct combination of Lemmas 3.6 to 3.8. �

Remark 3.9. The norm closure of the subset πM ⊆ π0SG[M] from Lemma 3.8 should have indicated
why the localisation (πM)−1SG[M] even had a chance of attaining the multiplicative norms.
In general, a localisation on a G–E∞–ring need not refine again to a G–E∞–ring, as is well
documented for instance in [14]. Nonetheless, the norm closure of a multiplicative subset is a
necessary and sufficient property for the localisation to refine to the structure of a G–E∞–ring.
This can be deduced for example from [25, Lem. 5.27].

Finally, we use Theorem 3.3 to quickly deduce Theorem 1.3.

Proof of Theorem 1.3. Let K ≤ G and N a G–Mackey functor, thought of as an Eilenberg–Mac Lane
genuine G–spectrum (see e.g., [26, Ex. 4.41]). Then by definition of RO(G)–graded Bredon homology (loc.
cit.), we have HK

� (�BM; N) = πK
�

(
N ⊗ SG[�BM]

)
. Moreover, by the second part of Lemma 3.6, we know that

ResG
K (πG

M)−1SG[M] � (πK
M)−1ResG

KSG[M] and so we get

HK
� (M; N)[(πK

0 M)−1] = (πK
M)−1πK

�

(
N ⊗ SG[M]

) ∼= πK
�

(
N ⊗ (πG

M)−1SG[M]
)

whence the result by Theorem 3.3. �

4 Final Remarks
In this last section, we will comment on three points:

• We analyse the geometric fixed points of the abstract localisation from Notation 3.1 and show that
it has an easy description,

• we explain a generic situation where the theorem might be applied,
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• and we give a plentiful source of examples of G–E∞–monoid G–spaces.

For the first point, as we have remarked in Notation 3.1, the abstract localisation LS−1 R, if it exists,
has no reason to have a nice description in general. Notwithstanding, it does interact well with the
geometric fixed points, as we now explain.

Observation 4.1. Let S ⊆ π0R be a multiplicative G–subset for some R ∈ CAlg(SpG). Recall for
instance from [18, Cons. 6.10, Thm. 6.11] that we have a lax symmetric monoidal Bousfield
localisation 	G : SpG � Sp : 
G, which then induces a Bousfield localisation 	G : CAlg(SpG) �
CAlg(Sp) : 
G. Here for X ∈ Sp, 
GX is the G–spectrum such that (
GX)G � X and (
GX)H � 0 for
H � G. Classically, this is also written as ẼP ⊗ X where P is the proper family of subgroups of
G. We claim that the resulting equivalence MapCAlg(SpG)(R, 
GA) � MapCAlg(Sp)(	

GR, A) restricts
to an equivalence

MapS−1

CAlg(SpG)
(R, 
GA) � Map(	GSG)−1

CAlg(Sp)
(	GR, A).

To see this, since 	G
G � id, we know 	G induces an inclusion

MapS−1

CAlg(SpG)
(R, 
GA) ↪→ Map(	GSG)−1

CAlg(Sp)
(	GR, A).

To see that this is even an equivalence, suppose we have ϕ : 	GR → A, which inverts 	GSG ⊆
π0	

GR. The adjoint ϕ : R → 
GA is given by the composite

ϕ : R
η−→ 
G	GR


Gϕ−→ 
GA,

where the adjunction unit η is a map of E∞–rings and sends elements in SG to elements in 	GSG.
Therefore, ϕ must invert all elements in SG. Moreover, since for H � G, (
GA)H are equivalent
to the zero rings, the maps ResG

Hϕ : ResG
HR → ResG

H
GA � 0 send everything to units for trivial
reasons, and so in total ϕ indeed inverts elements in S as was to be shown.

Proposition 4.2. Let R ∈ CAlg(SpG), S ⊆ π0R a multiplicative subset, and suppose LS−1 R exists. Then
the canonical map 	GR → 	GLS−1 R induces an equivalence (	GSG)−1	GR � 	GLS−1 R.

Proof. Let A ∈ CAlg(Sp). Then

MapCAlg(Sp)(	
GLS−1 R, A) � MapCAlg(SpG)(LS−1 R, 
GA)

� MapS−1

CAlg(SpG)
(R, 
GA)

� Map(	GSG)−1

CAlg(Sp)
(	GR, A)

� MapCAlg(Sp)((	
GSG)−1	GR, A),

where the third equivalence is by Observation 4.1. �

Remark 4.3. Let M ∈ CMon(SG). We claim that 	GπG
M = πMG ⊆ π0S[MG] where πMG is the image of

the nonequivariant Hurewicz map π0MG → π0S[MG]. Given this, we see by Proposition 4.2 that

	G(π−1
M SG[M]) � (πMG )−1S[MG]

and so applying 	G reduces Theorem 3.3 (i) to the classical group–completion theorem
formulated for example in [23, Thm. 1]. To prove the claim, we want to show that the inclusion
	GπG

M ⊆ πMG is surjective. By one of the defining properties of 	G, we know that there is a
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7562 | K. Hilman

commuting square

which yields a commuting square

This implies that 	GπG
M ⊆ πMG is surjective, as desired.

Next, we turn to the matter of recording a generic toy situation where our theorem might be useful.
This manoeuvre is an immediate generalisation of its (standard) nonequivariant analogue.

Proposition 4.4 (Equivariant simply–connected homology Whitehead theorem). Suppose we
have a map f : X → Y of G–spaces, which induces an equivalence SGf : SG[X] → SG[Y]. Suppose
moreover that X, Y are both G–simply–connected (i.e., XH and YH are simply–connected for all
H ≤ G). Then the map f : X → Y was already a G–equivalence.

Proof. To see this, we need to show that we have an equivalence for all fixed points. So let H ≤ G.
Applying the H–geometric fixed points 	H to the equivalence SGf gives us an equivalence 	HSGf �
S[fH] : S[XH]

�−→ S[YH]. Hence, by the ordinary simply–connected homology Whitehead theorem, the
map of spaces fH : XH → YH is an equivalence, as was to be shown. �

Our Theorem 3.3 can then potentially be used in conjunction with this in the following way. Suppose
we have a map of G–E∞–monoids N → �BM where we already understand SG[N] and where �BM and
N are G–simply–connected. Since the theorem gives a formula for SG[�BM], we might be able to use it
to show that SG[N] → SG[�BM] is an equivalence. If this were true, then by the equivariant Whitehead
proposition above, we can deduce that N → �BM is an equivalence, thus giving a computation of �BM
in terms of N.

Of course, this toy situation might not be so applicable since G–simply connectedness is an
unreasonable condition to demand in general. Our intention for this was only to indicate a template
over which other variations might be beneficial in specific circumstances.

Lastly, we end the main body of this note by recording a huge standard source of potentially
interesting examples of G–E∞–monoid G–spaces to consider.

Example 4.5. G–E∞–monoid G–spaces, for which the localisation formula of Theorem 3.3 (ii)
holds, are in abundant supply. One fertile source is small semiadditive ∞–categories (which
include stable ∞–categories) equipped with G–actions, that is, objects in Fun(BG, Cat⊕

∞). If
C were one such instance, then {ChH}H≤G assembles to a G–E∞–monoid G–category. In other
words, it is an object in MackG(Cat⊕

∞) (cf. [3, §8] for an explanation of this). Then taking the
groupoid core yields a G–E∞–monoid G–space {(ChH)�}H≤G ∈ MackG(S) � CMonG(SG). In fact,
this procedure of producing G–E∞–monoid G–spaces by taking groupoid cores works more
generally for any G–semiadditive G–category.

Concrete examples belonging to this template include equipping the trivial G–action on categories
like finitely generated projective R–modules ProjR for R ∈ CRing or perfect A–modules PerfA

for A ∈ CAlg(Sp). These yield the objects {Map(BH, Proj�R )}H≤G and {Map(BH, Perf�
A)}H≤G in

CMonG(SG), the group–completions of which give the so–called Swan equivariant K–theories.
Familiar examples of G–spectra obtained in this manner include kuG and koG. Another
interesting source of semiadditive categories equipped with G–actions come from finite Galois
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extensions of fields K ⊆ L. In this case, the G–Galois action on Vectfd
L yields the G–E∞–monoid

G–space {(Vectfd
LH )�}H≤G.

A Algebras in Equivariant Cartesian Symmetric Monoidal Structures
We will provide in this appendix a proof of the folklore result that CMonG(C) � CAlgG(C×), which
heuristic intuition we explain at the end of Setting 2.4. The proof will be a straightforward—if a bit
tedious—adaptation of the proof by Lurie from [17, Prop. 2.4.2.5] as organised by Chu and Haugseng [6]
in the language of the so–called cartesian patterns. The main idea of Lurie’s proof is that there is a nice
model for the cartesian symmetric monoidal structure that embeds inside a larger category, which in
turn admits a convenient universal property of being mapped into. In the interest of space and as this is
a necessarily technical result, we will assume some familiarity with the formalism and underpinnings of
parametrised homotopy theory (cf. [20, 27]), as well as the associated factorisation system and operad
theory as laid out in [28, §3, §4] and [22, §2.1–§2.3]. We will however provide basic recollections and
precise references for the sake of comprehensibility. Lastly, we should also mention that this is an
extremely brisk and minimalistic account sufficient for our purposes, and it might be interesting to
investigate the notion of parametrised cartesian patterns along the level of generality in [6].

Our first order of business is to set up the basic theory of G–cartesian patterns and their associated
monoids.

Notation A.1. It will be convenient to adopt the following conventions to lighten our notational
load: for C a G–category, H ≤ G, and a H–object X ∈ CH (which can equivalently be viewed as a
H–functor ∗ → ResG

HC),

• we write CH for the H–category ResG
HC. Note that this does not conflict with the notation CH from

Setting 2.4. As such, we will also write H–objects as X ∈ CH,
• we will write CX/ to mean the H–category (CH)X/,
• for a G–functor D → C, we will write DX for the H–category ∗×CH

DH, where ∗ → CH is the H–functor
picking out X.

For a map f : V → W in OG, we write f ∗ : CW → CV for the restriction functor. If they exist, we write
f!, f∗ : CV → CW for the indexed coproduct and indexed product associated to f , respectively
(note that in [20] the notations for f!, f∗ are given respectively by

∐
f ,

∏
f ). In this case, we have

f! � f ∗ � f∗.

Definition A.2 (“[6, Def. 2.1]”). Let O ∈ CatG. A G–algebraic pattern structure on O is a G–factorisation
system (i.e., a fibrewise factorisation system closed under the restriction functors, cf. [28, Def.
3.1]) on O together with a collection of objects that are termed elementary objects. We term the
left (resp. right) class as the fibrewise inert (resp. fibrewise active) morphisms. A morphism
of G–algebraic patterns is a G–functor O → P , which preserves the fibrewise inert and active
morphisms as well as the elementary objects. Write Oint for the subcategory of O containing
only the fibrewise inert morphisms, and write Oel ⊆ Oint for the full subcategory of elementary
objects and fibrewise inert morphisms.

Notation A.3. Fix H ≤ G and O ∈ OH a H–object. Write Oel
O/ := Oel ×Oint Oint

O/ for the category of
fibrewise inert maps from O to elementary objects, and morphisms are fibrewise inert maps
between these.

Notation A.4. We will follow Chu and Haugseng’s notation from [5, 6] and use � to denote inert
maps and � to denote active maps.

Example A.5. Recall from [22, Def. 2.1.2] the G–category of finite pointed G–sets Fin∗. This is given
at level H by Fun(BH, Fin∗). It can also be described explicitly as follows: the objects in level H
for some H ≤ G look like [U → G/H] where U is a finite G–set, and a morphism from [U → G/H]
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7564 | K. Hilman

to [W → G/K] looks like

where all maps in sight are G–equivariant and the induced map Z → U ×G/H G/K is a summand
inclusion.

This is the prime example of a G–algebraic pattern, using that algebraic patterns are closed under
limits in Cat∞ by [5, Cor. 5.5]. Concretely, when K = H, the fibrewise inert maps are the ones
where Z → W is an equivalence, and the fibrewise active maps are those where the induced
map Z → U ×G/H G/K is an equivalence (see [22, Def. 2.1.3]); the elementary objects are the
objects [G/H

=−→ G/H] at level H for each H ≤ G.

Following [5, Def. 6.1], we may make the following:

Definition A.6. We say that a morphism f : O → P of G–algebraic patterns has unique lifting of
fibrewise active morphisms if for every H ≤ G and fibrewise active morphism φ : P → f (O) in PH,
the space of lifts of φ to a fibrewise active morphism O′ → O in OH is contractible.

Since G–coinitiality is a fibrewise statement by the dual of [27, Thm. 6.7] and Definition A.6 is also
fibrewise, we may deduce immediately from [5, Lem. 6.2] the following:

Lemma A.7. A morphism of G–algebraic patterns f : O → P has unique lifting of fibrewise active
morphisms if and only if for every H ≤ G and all P ∈ PH, the functor Oint

P/ → OP/ is G–coinitial.

Definition A.8 (“[6, Def. 2.6]”). A G–cartesian pattern is a G–algebraic pattern O equipped with a
morphism of G–algebraic patterns | − | : O → Fin∗ such that for every H ≤ G and O ∈ OH, the
induced map Oel

O/ → Finel
∗,|O|/ is an equivalence. A morphism of G–cartesian patterns is a morphism

of G–algebraic patterns over Fin∗.

Construction A.9. Recall the characteristic morphisms from [22, Defn. 2.1.6], that is, maps in Fin∗
that look like

where W = G/K is a G–orbit in U. We write such maps as χ[W⊆U]. These should be thought of as
the analogue of the Segal maps ρ i (cf. [17, Nota. 2.0.0.2]) in the parametrised setting. For any
G–functor F : Fin∗ → C where C has finite indexed products, the map χ[W⊆U] induces a canonical
map of H–objects in C

F([U → G/H]) −→ w∗F([W
=−→ W])

since we have

F(χ[W⊆U]) ∈ MapC

(
F([U → G/H]), F([W

=−→ W])
)

� MapCK

(
w∗F([U → G/H]), F([W

=−→ W])
)

� MapCH

(
F([U → G/H]), w∗F([W

=−→ W])
)

by the fact that C has indexed products.

Definition A.10 (“[6, Def. 2.9]”). Let O be a G–cartesian pattern and suppose C has finite indexed
products. A G–functor F : O → C is said to be an O–monoid if for every [U → G/H] ∈ Fin∗H and O ∈
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OH lying over [U → G/H], writing U = ∐n
j=1 Uj for the G–orbital decomposition, uj : Uj → G/H for

the structure maps and χ[Uj⊆U] : O → Oj with Oj lying over [Uj = Uj] afforded by the equivalence

Oel
O/

�−→ Finel
∗,|O|/, the canonical map of H–objects in C

F(O) −→
n∏

j=1

uj∗F(Oj)

is an equivalence. By the G–cartesian pattern condition, this is equivalent to the following:
writing j : Oel ↪→ Oint for the inclusion, F is an O–monoid if and only if the canonical map
F|Oint → j∗j∗(F|Oint ) is an equivalence. We write MonO(C) ⊆ FunG(O,C) for the full subcategory
of O–monoids in C.

Remark A.11. In the case O = Fin∗, by an easy comparison of definitions with [20, Def. 5.9], we
get that MonFin∗ (C) � CMonG(C) where CMonG(C) is in the sense discussed in the body of the
paper.

The exact same argument as in [5, Prop. 6.3], which uses only formalities about Kan extensions such
as fully faithfulness of Kan extensions along fully faithful functors [27, Prop. 10.6] as well as Lemma
A.7, applies here to yield the following:

Lemma A.12. If f : O → P is a morphism of G–algebraic patterns that has unique fibrewise active
lifting, then the right Kan extension f∗ : FunG(O,C) → FunG(P ,C) restricts to f∗ : MonO(C) →
MonP (C).

Next, we work towards constructing the equivariant generalisation of Lurie’s model [17, Prop. 2.4.1.5]
for the cartesian symmetric monoidal structure for a G–category with finite indexed products.

Construction A.13. Let �× denote the full subcategory of Fin�1

∗ spanned by the fibrewise inert
morphisms. It will be convenient to denote by [U � V]G/H ∈ �

×
H the H–object

By [28, Prop. 3.5 (1)], we know that ev0 : �× −→ Fin∗ is a G–cartesian fibration. By the proof
of said result, we see that for a H–map f : U → V in Fin∗, the H–functor f ! : �

×
[V→G/H] → �

×
[U→G/H]

associated to the G–cartesian fibration is given concretely as follows: for K ≤ H and [V � W]G/K

a K–object in �
×
[V→G/H], the K–object f !([V � W]G/K) ∈ �

×
[U→G/H] is given by the unique dashed

fibrewise inert map in

(A.1)

obtained by virtue of the unique fibrewise inert–active factorisation.
Observe also that for [U → G/H] ∈ Fin∗H, �

×
[U→G/H] is a H–category such that for any K ≤ H, the fibre

over H/K is given by the opposite of the poset of K–subsets of the H–set U (compare with [17,
Cons. 2.4.1.4]): this is because the fibrewise inert maps pick out the orbits in U.

Construction A.14 (“[17, Cons. 2.4.1.4]”). Applying [27, Thm. 9.3 (2)] or [28, Recoll. 4.3] to the G–
cartesian fibration ev0 : �× −→ Fin∗ and the G–cocartesian fibration C × Fin∗ → Fin∗ we obtain
a G–cocartesian fibration C× → Fin∗. By [28, Thm. 4.9], this construction satisfies a universal
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property, which implies in particular that

Fun/Fin∗ (Fin∗,C×
) � Fun(�×,C) (A.2)

Furthermore, by [27, Prop. 9.7], we have

C×
[U→G/H] � Fun[U→G/H]

(
�

×
[U→G/H], (C × Fin∗)[U→G/H]

) � Fun(�
×
[U→G/H],CH).

If C has all finite indexed products, we define C× to be the full subcategory of C×
whose objects

over [U → G/H] are the H–functors F : �
×
[U→G/H] → CH such that for every K ≤ H and K–object

[U � V]G/K with G–orbit decomposition V = ∐n
j=1 Vj and structure maps vj : Vj → G/K, the map

F([U � V]G/K) −→
n∏

j=1

vj∗F([U � V � Vj]Vj ) (A.3)

induced by the characteristic maps χ[Vj⊆V] : V � Vj is an equivalence.
Now observe that, writing U = ∐

j Uj for the G–orbital decomposition with structure maps uj : Uj →
G/H, we have the full subcategory

∐
j uj!∗ ⊆ �

×
[U→G/H] consisting of the single G–orbits of U. A

straightforward unwinding of definitions show that C×
[U→G/H] ⊆ C×

[U→G/H] is identified with the
full subcategory

∏
j

uj∗u∗
j C � Fun(

∐
j

uj!∗,C) ⊆ Fun(�
×
[U→G/H],CH)

where the inclusion is by right Kan extension (compare with the proof of [17, Prop. 2.4.1.5 (4)]).
This in particular means that we have an identification C×

[U→G/H] � ∏
j CUj .

Remark A.15. By [28, Recoll. 4.3] and using that the cocartesian pushforward functors to the
constant G–cocartesian fibration C × Fin∗ → Fin∗ are just the identity functors, we see that for
a morphism of H–objects f : U → V in Fin∗H, the associated cocartesian pushforward functor
on the G–cocartesian fibration C× → Fin∗ looks like

FunH(�
×
[U→G/H],CH) −→ FunH(�

×
[V→G/H],CH) :: F �→ F ◦ f !,

where f ! : �
×
[V→G/H] → �

×
[U→G/H] is the H–functor described in Construction A.13.

Proposition A.16 (“[17, Prop. 2.4.1.5]”). Let C be a G–category with finite indexed products. The
composite C× ⊆ C× → Fin∗ is a G–symmetric monoidal structure on the G–category C.

Proof. By the definition of G–symmetric monoidal categories [22, Def. 2.1.7 and Def. 2.2.3], first note
that it would suffice to show that the composite is a G–cocartesian fibration and that the characteristic
maps associated to any orbital decomposition U = ∐n

j=1 Uj induce equivalences C×
[U→G/H]

�−→ ∏n
j=1 CUj since

these two conditions together ensure that [22, Def. 2.1.7 (3)] holds. The second point has been dealt with
at the end of Construction A.14 and so we are left to show that the composite is indeed a G–cocartesian
fibration.

More precisely, we need to show that the condition (A.3) is stable under the pushforward functors
described in Remark A.15. To this end, suppose F ∈ FunH(�

×
[U→G/H],CH) satisfies the condition (A.3). We

need to show that for any K ≤ H and any [V � W]G/K ∈ �
×
[V→G/H] with structure maps wj : Wj → G/K, the

map

Ff !([V � W]G/K) −→
n∏

j=1

wj∗Ff !([V � W � Wj]Wj )

is an equivalence.
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To set up notation, writing f−1Wj ⊆ U for the preimage (which might be empty) and f−1Wj = �nj

i=1Wji its
orbital decomposition, we know from (A.1) that f ! is computed as the left inert map in the left square in

together with the associated structure maps notated on the right triangle. Using that wji∗ � wj∗αji∗ by
composability of right Kan extensions, we now simply contemplate the following commuting diagram:

where the equivalences are by our hypothesis on F. Hence, the top horizontal map is also an equivalence,
as desired. �

Our next goal is to show that �× can be endowed with the structure of a G–cartesian pattern and to
show in Lemma A.20 that its monoid theory is equivalent to that associated to Fin∗.

Lemma A.17. There is a natural factorisation system on �× ⊆ Fin�1

∗ where the fibrewise inert
(resp. fibrewise active) morphisms are those that are pointwise fibrewise inert (resp. fibrewise
active).

Proof. The exact same argument of [6, Lem. 5.8] works here since that argument only uses composabil-
ity of inert morphisms and uniqueness of the fibrewise inert–active factorisations, both of which are
true in Fin∗. �

Construction A.18 (“[6, Rmk. 5.11]”). We endow �× with a G–algebraic pattern structure using
the factorisation system above with [G/H = G/H]G/H for all H ≤ G as the elementary objects.
Moreover, it is not hard to see that ev1 : �× → Fin∗ endows �× with a G–cartesian pattern
structure. To wit, for any H–object [U � V]G/H in �×, any inert map to an elementary object
[W = W]W

is totally determined by the inert map V � W, and hence the map (�×)el
[U�V]G/H/

ev1−→ Finel
∗,V/ in

the definition of a G–cartesian structure is indeed an equivalence.

Construction A.19. Let i : Fin∗ ↪→ �× be the functor that takes a finite H–set U, for any H ≤ G, to
[U

=−→ U]G/H. In other words, it is the right Kan extension along the inclusion {1} ↪→ �1 and hence
is fully faithful by [27, Prop. 10.6]. This is immediately seen to be a morphism of G–cartesian
patterns. By the same argument as in [6, Rmk. 5.13], which uses only the uniqueness of the
fibrewise inert–active factorisation in �×, we see that i has unique lifting of fibrewise active
morphisms in the sense of Definition A.6.
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Now, note that a functor M : �× → C is a �×–monoid in the sense of Definition A.10 if and only
if for any H–object [U � W]G/H of �× with orbital decomposition W = ∐n

j=1 Wj and structure maps
wj : Wj → G/H, the canonical map of H–objects

M([U � W]G/H) −→
n∏

j=1

wj∗M([Wj = Wj]Wj ) (A.4)

is an equivalence. Taking this description as well as Lemma A.12 as the appropriate replacements, the
proof of [6, Lem. 5.14] now works in our setting mutatis mutandis to yield:

Lemma A.20. Let C have finite indexed products. The adjunction i∗ : Mon�× (C) � MonFin∗ (C) : i∗
is an equivalence.

Lastly, we relate the notion of monoids explored so far with that of algebras, which we recall now.

Recollection A.21. Let C⊗ → Fin∗ be a G–symmetric monoidal category (cf. for instance
[22, Def. 2.2.3]). Then the category of G–commutative algebras CAlgG(C⊗) is defined to be
Funint

/Fin∗
(Fin∗,C⊗), that is, the category of Fin∗–sections Fin∗ → C⊗, which send inert morphisms

to Fin∗–cocartesian morphisms (cf. [22, Def. 2.2.1] for a definition). Observe now that any inert
morphism in Fin∗ (cf. [22, Def. 2.1.3])

can be factored as the composition of the two inert morphisms

where the left one is fibrewise, that is, it lives in the fibre over G/K. Since by definition
any G–functor A : Fin∗ → C⊗ must send the inert morphisms of the type on the right to
Fin∗–cocartesian morphisms, the requirement for A to be in CAlgG(C⊗) can equivalently be
formulated as sending the fibrewise inert morphisms to Fin∗–cocartesian morphisms.

The following lemma, which is an immediate modification of [6, Lem. 5.15], will be the bridge
connecting the theory of monoids and that of algebras.

Lemma A.22. Under the natural equivalence Fun/Fin∗ (Fin∗,C×
) � Fun(�×,C) from (A.2), the full

subcategory Mon�× (C) from the right-hand side is identified with Funint
/Fin∗

(Fin∗,C×) from the
left-hand side.

Proof. By Recollection A.21, a functor F : Fin∗ → C×
over Fin∗ lies in Funint

/Fin∗
(Fin∗,C×) if and only

if F factors through the full subcategory C× and F takes fibrewise inert morphisms to cocartesian
morphisms. We can translate these requirements in terms of the corresponding functor F′ : �× → C
as the following pair of conditions: for any H ≤ G and H–object [U � W]G/H in �×,

1. Writing the orbital decomposition W = ∐n
j=1 Wj with structure maps wj : Wj → G/H, the canonical

map

F′([U � W]G/H) −→
n∏

j=1

wj∗F′([U � W � Wj]Wj )

is an equivalence.
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2. For every H–inert map Y � U in Fin∗, the morphism

F′([Y � U � W]G/H) → F′([U � W]G/H)

is an equivalence. This reinterpretation of fibrewise inerts being sent to cocartesian morphisms is
again by Remark A.15.

On the other hand, F′ is a monoid if for any H ≤ G and H–object [U � W]G/H in Fin∗ and using
the notations above, the map (A4) is an equivalence. To see that this is equivalent to the first pair of
conditions, observe that we have the following commuting triangles

With the ingredients set up, the rest of the proof of [6, Lem. 5.15] now goes through word–for–word. �

We may now deduce the desired equivalence:

Proposition A.23. Let C be a G–category with finite indexed products. There is a canonical
equivalence CMonG(C) � CAlgG(C×).

Proof. Immediate combination of Lemma A.20 and Lemma A.22, using also that CAlgG(C×) =
Funint

/Fin∗
(Fin∗,C×) by definition. �
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